
Package: datavolley (via r-universe)
September 7, 2024

Title Reading and Analyzing DataVolley Scout Files

Version 1.8.1

Description Provides functions for parsing and working with volleyball
match files in DataVolley format.

Depends R (>= 3.2.4)

URL https://datavolley.openvolley.org,

https://github.com/openvolley/datavolley

BugReports https://github.com/openvolley/datavolley/issues

Imports assertthat, data.table, digest, dplyr, jpeg, jsonlite,
lubridate, methods, polyclip, readr, stringi, stringr,
vscoututils (>= 0.1.7), xml2

Suggests testthat, ggplot2, knitr, raster, rmarkdown, covr

Encoding UTF-8

License MIT + file LICENSE

RoxygenNote 7.3.1

VignetteBuilder knitr

Remotes openvolley/vscoututils

Repository https://openvolley.r-universe.dev

RemoteUrl https://github.com/openvolley/datavolley

RemoteRef HEAD

RemoteSha a868b26649df5af25a7a3734e1e73b1b983c0695

Contents
check_player_names . 3
datavolley . 4
dvlist_summary . 4
dv_action2text . 5
dv_attack_code2desc . 6

1

https://datavolley.openvolley.org
https://github.com/openvolley/datavolley
https://github.com/openvolley/datavolley/issues

2 Contents

dv_attack_code2loc . 6
dv_attack_code2set_type . 7
dv_attack_code2side . 7
dv_attack_code_map . 8
dv_attack_phase . 8
dv_cone2xy . 9
dv_cone_polygons . 10
dv_court . 11
dv_create_meta_attacks . 13
dv_example_file . 14
dv_fake_coordinates . 15
dv_find_to_flip_coordinates . 16
dv_flip_xy . 17
dv_heatmap . 18
dv_index2xy . 20
dv_int2rgb . 21
dv_meta_video . 21
dv_plot_new . 22
dv_point_phase . 23
dv_read . 24
dv_read_sq . 26
dv_repair . 27
dv_sync_summary . 28
dv_sync_video . 29
dv_validate . 32
dv_write . 34
dv_xy . 35
dv_xy2cone . 37
dv_xy2subzone . 38
dv_xy2zone . 39
findnext . 40
findprev . 41
find_first_attack . 41
find_match . 42
find_player_name_remapping . 43
find_runs . 44
find_serves . 45
fix_ace_evaluations . 45
ggcourt . 46
inspect . 50
plays . 51
play_phase . 52
print.summary.datavolley . 53
print.summary.datavolleylist . 53
remap_player_info . 54
remap_player_names . 54
remap_team_names . 55
serve_win_points . 56

check_player_names 3

skill_evaluation_decoder . 57
summary.datavolley . 58
teams . 58

Index 60

check_player_names Check for similar player names

Description

Player names can sometimes be spelled incorrectly, particularly if there are character encoding
issues. This can be a particular problem when combining data from multiple files. This function
checks for similar names that might possibly be multiple variants on the same name.

Usage

check_player_names(x, distance_threshold = 4)

Arguments

x datavolley: a datavolley object as returned by dv_read, or list of such objects

distance_threshold

numeric: if two names differ by an amount less than this threshold, they will be
returned as possible matches

Value

data.frame

See Also

dv_read, adist

Examples

Not run:
x <- dv_read(dv_example_file(), insert_technical_timeouts = FALSE)
check_player_names(x)

End(Not run)

4 dvlist_summary

datavolley datavolley

Description

Provides basic functions for parsing Datavolley scout files. Datavolley is a software package used
for scouting and summarizing volleyball matches.

Details

The example data files provided with the datavolley package came from http://www.odbojka.
si/.

Author(s)

Ben Raymond <ben@untan.gl>

See Also

Useful links:

• https://datavolley.openvolley.org

• https://github.com/openvolley/datavolley

• Report bugs at https://github.com/openvolley/datavolley/issues

dvlist_summary Summarize a list of volleyball matches

Description

Summarize a list of volleyball matches

Usage

dvlist_summary(z)

Arguments

z list: list of datavolley objects as returned by dv_read

Value

named list with various summary indicators, including a competition ladder

See Also

dv_read

http://www.odbojka.si/
http://www.odbojka.si/
https://datavolley.openvolley.org
https://github.com/openvolley/datavolley
https://github.com/openvolley/datavolley/issues

dv_action2text 5

Examples

Not run:
x <- dv_read(dv_example_file(), insert_technical_timeouts=FALSE)
dvlist_summary(list(x,x)) ## same match duplicated twice, just for illustration purposes

End(Not run)

dv_action2text Generate a short, human-readable text summary of one or more ac-
tions

Description

Generate a short, human-readable text summary of one or more actions

Usage

dv_action2text(x, verbosity = 1)

Arguments

x data.frame or tibble: one or more rows from a datavolleyplays object as returned
by dv_read

verbosity integer: 1 = least verbose, 2 = more verbose. Currently ignored

Value

character vector

Examples

x <- dv_read(dv_example_file())
dv_action2text(plays(x)[27:30,])

6 dv_attack_code2loc

dv_attack_code2desc Nominal descriptions for standard attack codes

Description

Nominal descriptions for standard attack codes

Usage

dv_attack_code2desc(code)

Arguments

code character: vector of attack codes ("X5", "VP", etc)

Value

A named character vector of descriptions. Unrecognized attack codes will have NA description.

Examples

dv_attack_code2desc(c("X5", "X7", "PP", "blah"))

dv_attack_code2loc Nominal starting coordinate for standard attack codes

Description

Nominal starting coordinate for standard attack codes

Usage

dv_attack_code2loc(code)

Arguments

code character: vector of attack codes ("X5", "VP", etc)

Value

A vector of numeric coordinates

Examples

dv_attack_code2loc(code = c("X5", "X7", "PP"))

dv_attack_code2set_type 7

dv_attack_code2set_type

Set type for standard attack codes

Description

Set type for standard attack codes

Usage

dv_attack_code2set_type(code)

Arguments

code character: vector of attack codes ("X5", "VP", etc)

Value

A named vector of sides ("F", "B", "C", "P", "S", "-")

Examples

dv_attack_code2set_type(code = c("X5", "X7", "PP"))

dv_attack_code2side Attack side for standard attack codes

Description

Attack side for standard attack codes

Usage

dv_attack_code2side(code)

Arguments

code character: vector of attack codes ("X5", "VP", etc)

Value

A named vector of sides ("L", "R", "C")

Examples

dv_attack_code2side(code = c("X5", "X7", "PP"))

8 dv_attack_phase

dv_attack_code_map Translate attack type and starting zone into an attack code.

Description

If your DataVolley files does not have attack codes ready, (for example, if you are using Click&Scout),
this function will take the starting zone and tempo of the attack to map it to an attack code.

Usage

dv_attack_code_map(type, start_zone)

Arguments

type character: vector of attack tempos ("H", "T", "Q", etc). A type vector of length
1 will be expanded to the length of the start_zone vector, if needed

start_zone integer: vector of start zones

Value

A vector of attack codes, set_types, etc.

Examples

dv_attack_code_map(type = c("H", "Q", "T"), start_zone = c("8", "3", "4"))

dv_attack_phase Attack phase

Description

Attack phase as defined by DataVolley: either "Reception", "Transition sideout" or "Transition
breakpoint", assigned only to attack actions.

Usage

dv_attack_phase(x)

Arguments

x datavolleyplays: the plays component of a datavolley object as returned by
[dv_read()]

Value

Character vector

dv_cone2xy 9

dv_cone2xy Attack cones to x, y coordinates

Description

Attack cones to x, y coordinates

Usage

dv_cone2xy(
start_zones,
end_cones,
end = "upper",
xynames = c("ex", "ey"),
as = "points",
force_center_zone = FALSE

)

Arguments

start_zones integer: starting zone of attack

end_cones integer: cone of attack

end string: use the "lower" or "upper" part of the figure

xynames character: names to use for the x and y columns of the returned data.frame

as string: either "points" or "polygons" (see Value, below)
force_center_zone

logical: a vector indicating the attacks that should be treated as center zone
attacks regardless of their start_zone value (e.g. by the setter). If FALSE, the
start_zone value will be used. If provided as a single scalar value, this will be
applied to all attacks

Value

a tibble (NOT a data.frame) with columns "x" and "y" (or other names if specified in xynames). If as
is "polygons", the columns will be lists, because each polygon will have four x- and y-coordinates

See Also

ggcourt, dv_flip_xy, dv_xy2index, dv_index2xy, dv_xy, dv_xy2zone, dv_xy2subzone

Examples

Not run:
attacks from left side (zone 4) to cones 1-7

plot as line segments

10 dv_cone_polygons

cxy <- dv_cone2xy(4, 1:7)
add starting coordinate for zone 4
cxy <- cbind(dv_xy(4), cxy)
ggplot(cxy, aes(x, y, xend=ex, yend=ey)) + geom_segment() + ggcourt()

plot as polygons
cxy <- dv_cone2xy(4, 1:7, as = "polygons")

this returns coordinates as list columns, unpack these to use with ggplot
also add an identifier for each polygon
cxy <- data.frame(x = unlist(cxy$ex), y = unlist(cxy$ey),

id = unlist(lapply(1:nrow(cxy), rep, 4)))
ggplot(cxy, aes(x, y, group = id, fill = as.factor(id))) + geom_polygon() +

ggcourt()

End(Not run)

dv_cone_polygons The polygon coordinates for attack cones

Description

The polygon coordinates for attack cones

Usage

dv_cone_polygons(zone, end = "upper", extended = FALSE)

Arguments

zone string: one of "L", "R", "M"

end string: use the "lower" or "upper" part of the figure

extended logical: if FALSE, the polygons will only cover the actual court area; if TRUE,
they will be extended to cover the court periphery as well

Value

A data.frame with columns cone_number, x, y

Examples

Not run:
library(ggplot2)
cxy <- dv_cone_polygons("M")
ggplot(cxy, aes(x, y, group = cone_number, fill = as.factor(cone_number))) +
geom_polygon() + ggcourt()

End(Not run)

dv_court 11

dv_court Plot a volleyball court diagram

Description

Volleyball court schematic suitable for adding to a figure

Usage

dv_court(
plot_package = "base",
court = "full",
show_zones = TRUE,
labels = c("Serving team", "Receiving team"),
as_for_serve = FALSE,
show_zone_lines = TRUE,
show_minor_zones = FALSE,
grid_colour = "black",
zone_colour = "grey70",
minor_zone_colour = "grey80",
fixed_aspect_ratio = TRUE,
zone_font_size = 10,
...

)

Arguments

plot_package string: either "base" or "ggplot2". If "ggplot2", the ggcourt function is used

court string: "full" (show full court) or "lower" or "upper" (show only the lower or
upper half of the court)

show_zones logical: add numbers indicating the court zones (3m squares)?

labels string: labels for the lower and upper court halves (pass NULL for no labels)

as_for_serve logical: if TRUE and show_zones is TRUE, show zones as for serving. Only
zones 1,5,6,7,9 are meaningful in this case

show_zone_lines

logical: if FALSE, just show the 3m line. If TRUE, also show the 3m x 3m
zones

show_minor_zones

logical: add lines for the subzones (1.5m squares)?

grid_colour string: colour to use for court sidelines, 3m line, and net

zone_colour string: colour to use for zone lines and labels
minor_zone_colour

string: colour to use for minor zone grid lines

12 dv_court

fixed_aspect_ratio

logical: if TRUE, coerce the plotted court to be square (for a half-court plot) or a
2:1 rectangle (full court plot). Prior to package version 0.5.3 this was not TRUE
by default

zone_font_size numeric: the font size of the zone labels

... : additional parameters passed to ggplot2::theme_classic(...)

Details

The datavolley package uses the following dimensions and coordinates for plotting:

• the court is shown such that the sidelines are oriented vertically and the net is oriented hori-
zontally

• the intersection of the left-hand sideline and the bottom baseline is at (0.5, 0.5)

• the intersection of the right-hand sideline and the top baseline is at (3.5, 6.5)

• the net intersects the sidelines at (0.5, 3.5) and (3.5, 3.5)

• the zones 1-9 (as defined in the DataVolley manual) on the lower half of the court are located
at:

1. (3, 1)
2. (3, 3)
3. (2, 3)
4. (1, 3)
5. (1, 1)
6. (2, 1)
7. (1, 2)
8. (2, 2)
9. (3, 2)

• the zones 1-9 (as defined in the DataVolley manual) on the upper half of the court are located
at:

1. (1, 6)
2. (1, 4)
3. (2, 4)
4. (3, 4)
5. (3, 6)
6. (2, 6)
7. (3, 5)
8. (2, 5)
9. (1, 5)

To get a visual depiction of this, try: ggplot() + ggcourt() + theme_bw()

See Also

ggcourt for a ggplot2 equivalent function; dv_xy, dv_xy2index, dv_index2xy, dv_flip_xy

dv_create_meta_attacks 13

Examples

Not run:
x <- dv_read(dv_example_file(), insert_technical_timeouts=FALSE)

library(dplyr)

Example: attack frequency by zone, per team

attack_rate <- plays(x) %>% dplyr::filter(skill == "Attack") %>%
group_by(team, start_zone) %>% dplyr::summarize(n_attacks = n()) %>%
mutate(rate = n_attacks/sum(n_attacks)) %>% ungroup

add columns "x" and "y" for the x,y coordinates associated with the zones
attack_rate <- cbind(attack_rate, dv_xy(attack_rate$start_zone, end = "lower"))

for team 2, these need to be on the top half of the diagram
tm2 <- attack_rate$team == teams(x)[2]
attack_rate[tm2, c("x", "y")] <- dv_xy(attack_rate$start_zone, end = "upper")[tm2,]

plot it
dv_heatmap(attack_rate[, c("x", "y", "rate")], legend_title = "Attack rate")

add the court diagram
dv_court(labels = teams(x))

End(Not run)

dv_create_meta_attacks

Create a meta attack data.frame from the plays object if it is missing

Description

If your DataVolley file does not have a meta attack dataframe (for example, if you are using
Click&Scout), this function will create one from the information in the plays object.

Usage

dv_create_meta_attacks(plays)

Arguments

plays data.frame: the plays component of a datavolley object, as returned by dv_read

Value

A data.frame of attacks.

14 dv_example_file

dv_example_file Example DataVolley files provided as part of the datavolley package

Description

Example DataVolley files provided as part of the datavolley package

Usage

dv_example_file(choice = 1)

Arguments

choice numeric: which data file to return?

• 1 - the January 2015 Slovenian junior women’s final between Braslovče and
Nova KBM Branik (obtained from http://www.odbojka.si/

• 2 - the December 2012 men’s Slovenian national championship semifinal
between ACH Volley and Maribor (obtained from http://www.odbojka.
si/

• 3 - Nicaragua vs Cuba women from the Pan American Cup, August 2022
(vsm format, courtesy Christophe Elek)

Value

path to the file

See Also

dv_read

Examples

myfile <- dv_example_file()
x <- dv_read(myfile, insert_technical_timeouts = FALSE)
summary(x)

http://www.odbojka.si/
http://www.odbojka.si/
http://www.odbojka.si/

dv_fake_coordinates 15

dv_fake_coordinates Fake coordinate data

Description

Generates fake coordinate data. The DataVolley software has the capability to accurately record
court locations associated with each action. However, not all files contain this information (it can
be time consuming to enter). This function generates fake coordinate data that can be used for
demonstration purposes.

Usage

dv_fake_coordinates(skill, evaluation)

Arguments

skill string: the skill type to generate positions for (only "serve" is implemented so
far)

evaluation character: vector of evaluations (as returned in the evalution column of a
datavolleyplays object)

Value

data.frame of coordinates with columns "start_coordinate", "start_coordinate_x", "start_coordinate_y",
"end_coordinate", "end_coordinate_x", "end_coordinate_y". The returned data.frame will have as
many rows as the length of the evaluation vector

See Also

dv_xy

Examples

Not run:
library(ggplot2)

read example data file
x <- dv_read(dv_example_file(), insert_technical_timeouts = FALSE)

take just the serves from the play-by-play data
xserves <- subset(plays(x), skill=="Serve")

if the file had been scouted with coordinate included, we could plot them directly
this file has no coordinates, so we'll fake some up for demo purposes
coords <- dv_fake_coordinates("serve", xserves$evaluation)
xserves[, c("start_coordinate", "start_coordinate_x", "start_coordinate_y",

"end_coordinate", "end_coordinate_x", "end_coordinate_y")] <- coords

now we can plot these

16 dv_find_to_flip_coordinates

xserves$evaluation[!xserves$evaluation %in% c("Ace", "Error")] <- "Other"

ggplot(xserves, aes(start_coordinate_x, start_coordinate_y,
xend=end_coordinate_x, yend=end_coordinate_y, colour=evaluation))+

geom_segment() + geom_point() +
scale_colour_manual(values=c(Ace="limegreen", Error="firebrick", Other="dodgerblue")) +
ggcourt(labels=c("Serving team", "Receiving team"))

End(Not run)

dv_find_to_flip_coordinates

Find coordinates that need flipping

Description

The orientation of coordinates (e.g. is a serve going from the lower part of the court to the upper, or
vice-versa?) depends on how the scout entered them. This function finds coordinates that require
flipping, so that all attacks/serves/whatever can be plotted with the same orientation

Usage

dv_find_to_flip_coordinates(x, target_start_end = "lower")

Arguments

x datavolleyplays: the plays component of a datavolley object as returned by
dv_read

target_start_end

string: "lower" or "upper"

Value

A logical index with length equal to the number of rows of x. TRUE indicates rows of x that need
their coordinates flipped

See Also

dv_flip_xy

dv_flip_xy 17

dv_flip_xy Flip the x,y court coordinates

Description

This is a convenience function that will transform coordinates from the top half of the court to the
bottom, or vice-verse.

Usage

dv_flip_xy(x, y)

dv_flip_x(x)

dv_flip_y(y)

dv_flip_index(index)

Arguments

x numeric: x-coordinate. For dv_flip_xy this can be a two-column matrix or
data.frame containing x and y

y numeric: y-coordinate

index integer: grid index value

Value

transformed coordinates or grid index

See Also

ggcourt, dv_xy, dv_xy2index, dv_index2xy

Examples

Not run:
x <- dv_read(dv_example_file(), insert_technical_timeouts=FALSE)
library(ggplot2)
library(dplyr)

attack rate by zone (both teams combined)
attack_rate <- plays(x) %>% dplyr::filter(skill=="Attack") %>%

group_by(team, start_zone) %>% dplyr::summarize(n_attacks=n()) %>%
mutate(rate=n_attacks/sum(n_attacks)) %>% ungroup

add columns "x" and "y" for the x,y coordinates associated with the zones
attack_rate <- cbind(attack_rate, dv_xy(attack_rate$start_zone, end="lower"))

18 dv_heatmap

plot this
ggplot(attack_rate, aes(x, y, fill=rate)) + geom_tile() + ggcourt(labels=teams(x)) +

scale_fill_gradient2(name="Attack rate")

or, plot at the other end of the court
attack_rate <- attack_rate %>% mutate(x=dv_flip_x(x), y=dv_flip_y(y))

ggplot(attack_rate, aes(x, y, fill=rate)) + geom_tile() + ggcourt(labels=teams(x)) +
scale_fill_gradient2(name="Attack rate")

End(Not run)

dv_heatmap Plot a court heatmap, using base graphics

Description

See link{ggcourt} for a ggplot2-based court diagram, which can be used to plot heatmaps with
e.g. ggplot2::geom_tile.

Usage

dv_heatmap(
x,
y,
z,
col,
zlim,
legend = TRUE,
legend_title = NULL,
legend_title_font = 1,
legend_title_cex = 0.7,
legend_cex = 0.7,
legend_pos = c(0.8, 0.85, 0.25, 0.75),
res,
add = FALSE

)

Arguments

x numeric, RasterLayer or data.frame: x-coordinates of the data to plot, or a
RasterLayer layer or data.frame containing the data (x, y, and z together)

y numeric: y-coordinates of the data to plot

z numeric: values of the data to plot

col character: a vector of colours to use

dv_heatmap 19

zlim numeric: the minimum and maximum z values for which colors should be plot-
ted, defaulting to the range of the finite values of z

legend logical: if TRUE, plot a legend

legend_title string: title for the legend
legend_title_font

numeric: 1 = normal, 2 = bold, 3 = italic
legend_title_cex

numeric: size scaling of legend title

legend_cex numeric: size scaling of legend text

legend_pos numeric: position of the legend (xmin, xmax, ymin, ymax) - in normalized units

res numeric: size of the heatmap cells. This parameter should only be needed in
cases where the input data are sparse, when the automatic algorithm can’t work
it out. Values are given in metres, so res is 3 when showing zones, or 1.5 when
showing subzones

add logical: if TRUE, add the heatmap to an existing plot

Details

Data can be provided either as separate x, y, and z objects, or as a single RasterLayer or data.frame
object. If a data.frame, the first three columns are used (and assumed to be in the order x, y, z).

See Also

dv_court, dv_plot_new

Examples

Not run:
x <- dv_read(dv_example_file(), insert_technical_timeouts = FALSE)

library(dplyr)

Example: attack frequency by zone, per team

attack_rate <- plays(x) %>% dplyr::filter(skill == "Attack") %>%
group_by(team, start_zone) %>% dplyr::summarize(n_attacks = n()) %>%
mutate(rate = n_attacks/sum(n_attacks)) %>% ungroup

add columns "x" and "y" for the x,y coordinates associated with the zones
attack_rate <- cbind(attack_rate, dv_xy(attack_rate$start_zone, end = "lower"))

for team 2, these need to be on the top half of the diagram
tm2 <- attack_rate$team == teams(x)[2]
attack_rate[tm2, c("x", "y")] <- dv_xy(attack_rate$start_zone, end="upper")[tm2,]

plot it
dv_heatmap(attack_rate[, c("x", "y", "rate")], legend_title = "Attack rate")

or, controlling the z-limits

20 dv_index2xy

dv_heatmap(attack_rate[, c("x", "y", "rate")], legend_title = "Attack rate", zlim = c(0, 1))

add the court diagram
dv_court(labels = teams(x))

sometimes you may need more control over the plot layout
set up a plot with 10% bottom/top margins and 20% left/right margins
showing the lower half of the court only
dv_plot_new(margins = c(0.05, 0.1, 0.05, 0.1), court = "lower")
add the heatmap
dv_heatmap(attack_rate[1:6, c("x", "y", "rate")], add = TRUE)
and the court diagram
dv_court(court = "lower")

End(Not run)

dv_index2xy Grid index to x,y coordinate and vice-versa

Description

DataVolley uses a grid to represent positions on court (values in columns "start_coordinate", "mid_coordinate",
and "end_coordinate" in the play-by-play data frame). These functions convert grid index values to
x, y coordinates suitable for plotting, and vice-versa. For a description of the court dimensons and
coordinates see ggcourt.

Usage

dv_index2xy(index)

dv_xy2index(x, y)

Arguments

index integer: vector of grid indices. If missing, the entire grid will be returned. The
row numbers match the grid indices

x numeric: x-coordinate. For dv_index2xy this can be a two-column matrix or
data.frame containing x and y

y numeric: y-coordinate

Value

for dv_index2xy, a data.frame with columns "x" and "y"; for dv_xy2index a vector of integer values

See Also

ggcourt, dv_xy, dv_flip_xy, dv_xy2zone, dv_xy2subzone

dv_int2rgb 21

Examples

positions (zones) 1 and 3 are at x, y coordinates c(3, 1) and c(2, 3) respectively

their grid indices:
dv_xy2index(c(3, 2), c(1, 3))

dv_int2rgb Convert integer colour to RGB

Description

DataVolley files use an integer representation of colours. These functions convert to and from hex
colour strings as used in R.

Usage

dv_int2rgb(z)

dv_rgb2int(x)

Arguments

z integer: vector of integers

x integer: vector of hex colour strings

Value

Character vector of hex RGB colour strings

Examples

dv_int2rgb(c(255, 16711680))

dv_meta_video Get or set the video metadata in a datavolley object

Description

Get or set the video metadata in a datavolley object

Usage

dv_meta_video(x)

dv_meta_video(x) <- value

22 dv_plot_new

Arguments

x datavolley: a datavolley object as returned by [datavolley::dv_read()]

value string or data.frame: a string containing the path to the video file, or a data.frame
with columns "camera" and "file"

Value

For ‘dv_meta_video‘, the existing video metadata. For ‘dv_meta_video<-‘, the video metadata
value in ‘x‘ is changed

Examples

x <- dv_read(dv_example_file())
dv_meta_video(x) ## empty dataframe
dv_meta_video(x) <- "/path/to/my/videofile"
dv_meta_video(x)

dv_plot_new Create a new plot page for base graphics plotting

Description

The plot will be set up as either a full- or half-court plot, depending on the inputs. The extent
can be specified via the court argument (values either "full", "lower", or "upper"), or via the x
and y arguments. If the latter, provide either separate x and y numeric vectors, or as a single x
RasterLayer object. If no extent is specified by any of these methods, a full-court plot is assumed.

Usage

dv_plot_new(x, y, legend, court, margins, par_args, ...)

Arguments

x numeric or RasterLayer: x-coordinates of the data to plot, or a RasterLayer
layer defining the extent of the data

y numeric: y-coordinates of the data to plot. Not needed if x is a RasterLayer
object

legend logical: if TRUE, leave space for a legend

court string: either "full", "lower", or "upper"

margins numeric: vector of four values to use as margins (bottom, left, top, right). Values
are as a proportion of the plot size

par_args list: parameters to pass to par

... : additional parameters passed to plot.window

dv_point_phase 23

See Also

dv_court, dv_heatmap

Examples

dv_plot_new()
show an attack from position 4 to position 6
from <- dv_xy(4, end = "lower")
to <- dv_xy(6, end = "upper")
lines(c(from[1], to[1]), c(from[2], to[2]), col = "green")
add the court diagram
dv_court(labels = c("Attacking team", "Defending team"))

dv_point_phase Point phase

Description

Point phase as defined by DataVolley: either "Sideout" or "Breakpoint", assigned only to winning or
losing actions (including green codes). Note that the point phase is inferred for the winning action
(i.e. the point phase value for both the winning and losing action is "Sideout" if the winning team
was receiving).

Usage

dv_point_phase(x)

Arguments

x datavolleyplays: the plays component of a datavolley object as returned by
[dv_read()]

Value

Character vector

24 dv_read

dv_read Read a datavolley file

Description

The do_transliterate option may be helpful when trying to work with multiple files from the
same competition, since different text encodings may be used on different files. This can lead to
e.g. multiple versions of the same team name. Transliterating can help avoid this, at the cost of
losing e.g. diacriticals. Transliteration is applied after converting from the specified text encod-
ing to UTF-8. Common encodings used with DataVolley files include "windows-1252" (western
Europe), "windows-1250" (central Europe), "iso-8859-1" (western Europe and Americas), "iso-
8859-2" (central/eastern Europe), "iso-8859-13" (Baltic languages)

Usage

dv_read(
filename,
insert_technical_timeouts = TRUE,
do_warn = FALSE,
do_transliterate = FALSE,
encoding = "guess",
date_format = "guess",
extra_validation = 2,
validation_options = list(),
surname_case = "asis",
skill_evaluation_decode = "default",
custom_code_parser,
metadata_only = FALSE,
verbose = FALSE,
edited_meta

)

read_dv(
filename,
insert_technical_timeouts = TRUE,
do_warn = FALSE,
do_transliterate = FALSE,
encoding = "guess",
date_format = "guess",
extra_validation = 2,
validation_options = list(),
surname_case = "asis",
skill_evaluation_decode = "default",
custom_code_parser,
metadata_only = FALSE,
verbose = FALSE,
edited_meta

dv_read 25

)

Arguments

filename string: file name to read
insert_technical_timeouts

logical or list: should we insert technical timeouts? If TRUE, technical timeouts
are inserted at points 8 and 16 of sets 1–4 (for indoor files) or when the team
scores sum to 21 in sets 1–2 (beach). Otherwise a two-element list can be sup-
plied, giving the scores at which technical timeouts will be inserted for sets 1–4,
and set 5.

do_warn logical: should we issue warnings about the contents of the file as we read it?
do_transliterate

logical: should we transliterate all text to ASCII? See details

encoding character: text encoding to use. Text is converted from this encoding to UTF-8.
A vector of multiple encodings can be provided, and this function will attempt
to choose the best. If encoding is "guess", the encoding will be guessed

date_format string: the expected date format (one of "ymd", "mdy", or "dmy") or "guess". If
date_format is something other than "guess", that date format will be preferred
where dates are ambiguous

extra_validation

numeric: should we run some extra validation checks on the file? 0=no extra
validation, 1=check only for major errors, 2=somewhat more extensive, 3=the
most extra checking

validation_options

list: additional options to pass to the validation step. See dv_validate for
details

surname_case string or function: should we change the case of player surnames? If surname_case
is a string, valid values are "upper","lower","title", or "asis"; otherwise surname_case
may be a function that will be applied to the player surname strings

skill_evaluation_decode

function or string: if skill_evaluation_decode is a string, it can be either
"default" (use the default DataVolley conventions for dvw or vsm files), "volley-
metrics" (to follow the scouting conventions used by VolleyMetrics), "german"
(same as "default" but with B/ and B= swapped), or "guess" (use volleymetrics if
it looks like a VolleyMetrics file, otherwise default). If skill_evaluation_decode
is a function, it should convert skill evaluation codes into meaningful phrases.
See skill_evaluation_decoder

custom_code_parser

function: function to process any custom codes that might be present in the
datavolley file. This function takes one input (the datavolley object) and
should return a list with two named components: plays and messages

metadata_only logical: don’t process the plays component of the file, just the match and player
metadata

verbose logical: if TRUE, show progress

26 dv_read_sq

edited_meta list: [very much experimental] if supplied, will be used in place of the metadata
present in the file itself. This makes it possible to, for example, read a file, edit
the metadata, and re-parse the file but using the modified metadata

Value

A named list with several elements. meta provides match metadata, plays is the main play-by-play
data in the form of a data.frame. raw is the line-by-line content of the datavolley file. messages is
a data.frame describing any inconsistencies found in the file.

References

http://www.dataproject.com/IT/en/Volleyball

See Also

skill_evaluation_decoder dv_validate

Examples

Not run:
to read the example file bundled with the package
myfile <- dv_example_file()
x <- dv_read(myfile, insert_technical_timeouts=FALSE)
summary(x)

or to read your own file:
x <- dv_read("c:/some/path/myfile.dvw", insert_technical_timeouts=FALSE)

Insert a technical timeout at point 12 in sets 1 to 4:
x <- dv_read(myfile, insert_technical_timeouts=list(c(12),NULL))

to read a VolleyMetrics file
x <- dv_read(myfile, skill_evaluation_decode = "volleymetrics")

End(Not run)

dv_read_sq Read a team roster (*.sq) file

Description

Read a team roster (*.sq) file

http://www.dataproject.com/IT/en/Volleyball

dv_repair 27

Usage

dv_read_sq(
filename,
do_transliterate = FALSE,
encoding = "guess",
date_format = "guess",
surname_case = "asis",
verbose = FALSE

)

Arguments

filename string: file name to read

do_transliterate

logical: should we transliterate all text to ASCII?

encoding character: text encoding to use. Text is converted from this encoding to UTF-8.
A vector of multiple encodings can be provided, and this function will attempt
to choose the best. If encoding is "guess", the encoding will be guessed

date_format string: the expected date format (used for dates of birth). One of "ymd", "mdy",
"dmy", or "guess". If date_format is something other than "guess", that date
format will be preferred where dates are ambiguous

surname_case string or function: should we change the case of player surnames? If surname_case
is a string, valid values are "upper","lower","title", or "asis"; otherwise surname_case
may be a function that will be applied to the player surname strings

verbose logical: if TRUE, show progress

Value

A list with two components: "team" and "players", both of which are data frames

Examples

Not run:
x <- dv_read_sq("/path/to/my/roster_file")

End(Not run)

dv_repair Attempt to repair a datavolley object

28 dv_sync_summary

Description

Currently an attempt will be made to repair these issues: * if multiple players on the same team
have the same jersey number, players with that number (on that team) who did not take to the court
will be removed from their team roster. In this situation, whether or not a player took to the court is
determined from the match metadata only * if multiple players have the same player ID but different
jersey numbers, players with that ID who did not take to the court will be removed from their team
roster. In this situation, whether or not a player took to the court is determined from the match
metadata and the play-by-play data

Usage

dv_repair(x)

Arguments

x datavolley: a datavolley object as returned by [dv_read()]

Value

A modified copy of ‘x‘. If problems exist and cannot be repaired, an error will be thrown

dv_sync_summary Summarize the video sync times in a dvw file

Description

This function will generate a summary of various video time differences in a dvw file. Apply this
to a file that you have synchronized to video, and the results can be used to tweak the behaviour of
dv_sync_video.

Usage

dv_sync_summary(x)

Arguments

x datavolley: a single datavolley object as returned by dv_read, or the plays
component of one

Value

A data.frame with columns type, N, mean, most_common, min, max

See Also

dv_sync_video

dv_sync_video 29

Examples

x <- dv_read(dv_example_file(3))
dv_sync_summary(x)

dv_sync_video Synchronize video times

Description

This function uses the time of each serve and some rules to align the other contacts in a rally with
their (approximately correct) times in the corresponding match video. Warning: experimental!

Usage

dv_sync_video(
x,
first_serve_contact,
freeball_dig_time_offset = NA,
contact_times = dv_sync_contact_times(),
offsets = dv_sync_offsets(),
times_from,
enforce_order = TRUE

)

dv_sync_contact_times(...)

dv_sync_offsets(...)

Arguments

x datavolley: a single datavolley object as returned by dv_read

first_serve_contact

numeric or string: the video time of the first serve contact. This can be a numeric
value giving the time in seconds from the start of the video, or a string of the
form "MM:SS" (minutes and seconds) or "HH:MM:SS" (hours, minutes and
seconds)

freeball_dig_time_offset

numeric: if non-NA, the clock times of freeball digs will be used directly in the
synchronization process. Freeball digs will be aligned using their clock times
relative to the first serve contact clock time, with this freeball_dig_time_offset
value (in seconds) added. So if when scouting live you typically enter freeball
digs one second after they happen, use freeball_dig_time_offset = -1. If
freeball_dig_time_offset is NA, which is the default, the clock times of
freeball digs will not be used in the synchronization process

contact_times list: a set of parameters that control the synchronization process. See Details,
below

30 dv_sync_video

offsets list: a list set of offsets to be added to each contact time in the second step of the
synchronization process. See Details, below. If offsets is NULL or an empty
list, no offsets are applied

times_from string: either "clock" or "video": take the serve times (and freeball dig times,
if freeball_dig_time_offset is non-NA) from clock or video times. By de-
fault, clock times are used unless they are all missing

enforce_order logical: the estimated contact times will always be time-ordered (the contact
time of a given touch cannot be prior to the contact time of a preceding touch).
But the offsets can be different for different skills, leading to final video times
that are not time ordered. These will be fixed if enforce_order is TRUE

... : name-value pairs of elements to override the defaults in dv_sync_contact_times
and dv_sync_offsets

Details

When a match is scouted live, the clock time of each serve will usually be correct because the scout
can enter the serve code at the actual time of serve. But the remainder of the touches in the rally
might not be at their correct times if the scout can’t keep up with the live action. This function
makes some assumptions about typical contact-to-contact times to better synchronize the scouted
contacts with the corresponding match video.

The clock time of each serve will be used as the reference time for each rally (unless the user
specifies times_from = "video"). If clock times are not present in the file, the video time of each
serve will be used instead. If those are also missing, the function will fail.

Freeball digs can optionally be treated in the same way as serves, with their scouted times used
directly in the synchronization process. Obviously this only makes sense if the scout has actually
been consistent in their timing when entering freeball digs, but assuming that is the case then setting
the freeball_dig_time_offset to a non-NA value will improve the synchronization of rallies
with freeballs. These rallies otherwise tend to synchronize poorly, because the play is messy and
less predictable compared to in-system rallies.

Note that synchronization from clock times relies on the serve clock times in the file being consis-
tent, and so it will only work if the match has been scouted in a single sitting (either live, or from
video playback but without pausing/rewinding/fast-forwarding the video). If your clock times are
not consistent but the video time of each serve is correct, then you can use the video time of each
serve as the reference time instead.

The synchronization is a two-step process. In the first step, the video time of each scouted contact
is estimated (i.e. the actual time that the player made contact with the ball). In the second step,
skill-specific offsets are added to those contact times. (This is important if your video montage
software uses the synchronized video times directly, because you will normally want a video clip to
start some seconds before the actual contact of interest).

The contact_times object contains a set of times (in seconds), which you can adjust to suit your
scouting style and level of play. If you have an already-synchronized dvw file, the dv_sync_summary
function can provide some guidance as to what these values should be. The contact_times object
contains the following entries:

• SQ - time between the scouted serve time and actual serve contact for jump serves

• SM - time between the scouted serve time and actual serve contact for jump-float serves

dv_sync_video 31

• SO - time between the scouted serve time and actual serve contact for all other serves

• SQ_R, SM_R, SO_R - the time between serve contact and reception contact for jump, jump-
float, and other serves

• R_E - the time between reception contact and set contact

• EQ_A - the time between set contact and attack contact for quick sets

• EH_A - the time between set contact and attack contact for high sets

• EO_A - the time between set contact and attack contact for all other sets

• A_B - the time between attack contact and block contact

• A_D - the time between attack contact and dig contact (no intervening block touch)

• A_B_D - the time between attack contact and dig contact (with block touch)

• D_E - the time between dig contact and set contact

• RDov - the time between reception or dig overpass contact and the next touch by the opposition

• END - the time between the last contact and end-of-rally marker

The offsets object defines the offset (in seconds) to be added to each contact time in the second
pass of the synchronization process. It contains the entries "S" (serve), "R" (reception), "E" (set),
"A" (attack), "D", (dig), "B" (block), and "F" (freeball).

Note that the entries in contact_times and offsets can be fractions. The actual video time
entries in the returned file are required to be integers and so the final values will be rounded, but
using fractional values (particularly for the contact_times entries) can give better accuracy in the
intermediate calculations.

Value

A copy of x with modified video_time values in its plays component

See Also

dv_sync_summary

Examples

x <- dv_read(dv_example_file())
first serve contact was at 54s in the video
x <- dv_sync_video(x, first_serve_contact = 54)

with a custom configuration
my_contact_times <- dv_sync_contact_times(SQ = 3) ## override default entries as necessary
first serve contact was at 3:35 in the video
x <- dv_sync_video(x, first_serve_contact = "3:35", contact_times = my_contact_times)

32 dv_validate

dv_validate Additional validation checks on a DataVolley file

Description

This function is automatically run as part of dv_read if extra_validation is greater than zero.
The current validation messages/checks are:

• message "The total of the [home|visiting] team scores in the match result summary (x$meta$result)
does not match the total number of points recorded for the [home|visiting] team in the plays
data"

• message "[Home|Visiting] team roster is empty": the home or visiting team roster has not been
entered

• message "Players xxx and yyy have the same player ID": player IDs should be unique, and so
duplicated IDs will be flagged here

• message "Players xxx and yyy have the same jersey number": players on the same team should
not have the same jersey number

• message "The listed player is not on court in this rotation": the player making the action is not
part of the current rotation. Libero players are ignored for this check

• message "Back-row player made an attack from a front-row zone": an attack starting from
zones 2-4 was made by a player in the back row of the current rotation

• message "Front-row player made an attack from a back-row zone (legal, but possibly a scout-
ing error)": an attack starting from zones 1,5-9 was made by a player in the front row of the
current rotation

• message "Quick attack by non-middle player"

• message "Middle player made a non-quick attack"

• message "Block by a back-row player"

• message "Winning serve not coded as an ace"

• message "Non-winning serve was coded as an ace"

• message "Serving player not in position 1"

• message "Player designated as libero was recorded making a [serve|attack|block]"

• message "Attack (which was blocked) does not have number of blockers recorded"

• message "Attack (which was followed by a block) has ’No block’ recorded for number of
players"

• message "Repeated row with same skill and evaluation_code for the same player"

• message "Consecutive actions by the same player"

• message "Point awarded to incorrect team following error (or \"error\" evaluation incorrect)"

• message "Point awarded to incorrect team (or [winning play] evaluation incorrect)"

• message "Scores do not follow proper sequence": one or both team scores change by more
than one point at a time

dv_validate 33

• message "Visiting/Home team rotation has changed incorrectly"

• message "Player lineup did not change after substitution: was the sub recorded incorrectly?"

• message "Player lineup conflicts with recorded substitution: was the sub recorded incor-
rectly?"

• message "Reception type does not match serve type": the type of reception (e.g. "Jump-float
serve reception" does not match the serve type (e.g. "Jump-float serve")

• message "Reception start zone does not match serve start zone"

• message "Reception end zone does not match serve end zone"

• message "Reception end sub-zone does not match serve end sub-zone"

• message "Attack type ([type]) does not match set type ([type])": the type of attack (e.g. "Head
ball attack") does not match the set type (e.g. "High ball set")

• message "Block type ([type]) does not match attack type ([type])": the type of block (e.g.
"Head ball block") does not match the attack type (e.g. "High ball attack")

• message "Dig type ([type]) does not match attack type ([type])": the type of dig (e.g. "Head
ball dig") does not match the attack type (e.g. "High ball attack")

• message "Multiple serves in a single rally"

• message "Multiple receptions in a single rally"

• message "Serve (that was not an error) did not have an accompanying reception"

• message "Rally had ball contacts but no serve"

Usage

dv_validate(x, validation_level = 2, options = list(), file_type)

validate_dv(x, validation_level = 2, options = list(), file_type)

Arguments

x datavolley: datavolley object as returned by dv_read

validation_level

numeric: how strictly to check? If 0, perform no checking; if 1, only identify
major errors; if 2, also return any issues that are likely to lead to misinterpre-
tation of data; if 3, return all issues (including minor issues such as those that
might have resulted from selective post-processing of compound codes)

options list: named list of options that control optional validation behaviour. Valid en-
tries are:

• setter_tip_codes character: vector of attack codes that represent setter tips
(or other attacks that a back-row player can validly make from a front-row
position). If you code setter tips as attacks, and don’t want such attacks to be
flagged as an error when made by a back-row player in a front-row zone, en-
ter the setter tip attack codes here. e.g. options=list(setter_tip_codes=c("PP","XY"))

file_type string: "indoor" or "beach". If not provided, will be taken from the x$file_meta$file_format
entry

34 dv_write

Value

data.frame with columns message (the validation message), file_line_number (the corresponding
line number in the DataVolley file), video_time, and file_line (the actual line from the DataVolley
file).

See Also

dv_read

Examples

Not run:
x <- dv_read(dv_example_file(), insert_technical_timeouts = FALSE)
xv <- dv_validate(x)

specifying "PP" as the setter tip code
front-row attacks (using this code) by a back-row player won't be flagged as errors
xv <- dv_validate(x, options = list(setter_tip_codes = c("PP")))

End(Not run)

dv_write Write a datavolley object to dvw file

Description

Note that this is really rather experimental, and you probably shouldn’t use it yet. Once complete,
this function will allow a datavolley file to be read in via dv_read, modified by the user, and then
rewritten back to a datavolley file. At this stage, most modifications to the datavolley object should
make it back into the rewritten file. However, the scouted code (in the code column) is NOT yet
updated to reflect changes that might have been made to other columns in the datavolley object.

Usage

dv_write(x, file, text_encoding = "UTF-8")

write_dv(x, file, text_encoding = "UTF-8")

Arguments

x datavolley: a datavolley object as returned by dv_read

file string: the filename to write to. If not supplied, no file will be written but the
dvw content will be returned

text_encoding string: the text encoding to use

dv_xy 35

Value

The dvw file contents as a character vector (invisibly)

See Also

dv_read

Examples

Not run:
x <- dv_read(dv_example_file())
outfile <- tempfile()
dv_write(x, outfile)

End(Not run)

dv_xy Court zones to x, y coordinates

Description

Generate x and y coordinates for plotting, from DataVolley numbered zones

Usage

dv_xy(
zones,
end = "lower",
xynames = c("x", "y"),
as_for_serve = FALSE,
subzones

)

Arguments

zones numeric: zones numbers 1-9 to convert to x and y coordinates

end string: use the "lower" or "upper" part of the figure

xynames character: names to use for the x and y columns of the returned data.frame

as_for_serve logical: if TRUE, treat positions as for serving. Only zones 1,5,6,7,9 are mean-
ingful in this case

subzones character: if supplied, coordinates will be adjusted for subzones. Values other
than "A" to "D" will be ignored

Details

For a description of the court dimensions and coordinates used for plotting, see ggcourt

36 dv_xy

Value

data.frame with columns "x" and "y" (or other names if specified in xynames)

See Also

ggcourt, dv_flip_xy, dv_xy2index, dv_index2xy, dv_cone2xy, dv_xy2zone, dv_xy2subzone

Examples

Not run:
x <- dv_read(dv_example_file(), insert_technical_timeouts = FALSE)

library(ggplot2)
library(dplyr)

Example 1: attack frequency by zone, per team

attack_rate <- plays(x) %>% dplyr::filter(skill == "Attack") %>%
group_by(team, start_zone) %>% dplyr::summarize(n_attacks = n()) %>%
mutate(rate = n_attacks/sum(n_attacks)) %>% ungroup

add columns "x" and "y" for the x, y coordinates associated with the zones
attack_rate <- cbind(attack_rate, dv_xy(attack_rate$start_zone, end = "lower"))

for team 2, these need to be on the top half of the diagram
tm2 <- attack_rate$team == teams(x)[2]
attack_rate[tm2, c("x", "y")] <- dv_xy(attack_rate$start_zone, end = "upper")[tm2,]

plot this
ggplot(attack_rate, aes(x, y, fill = rate)) + geom_tile() + ggcourt(labels = teams(x)) +

scale_fill_gradient2(name = "Attack rate")

Example 2: map of starting and ending zones of attacks using arrows

first tabulate attacks by starting and ending zone
attack_rate <- plays(x) %>% dplyr::filter(team == teams(x)[1] & skill == "Attack") %>%

group_by(start_zone, end_zone) %>% tally() %>% ungroup

convert counts to rates
attack_rate$rate <- attack_rate$n/sum(attack_rate$n)

discard zones with zero attacks or missing location information
attack_rate <- attack_rate %>% dplyr::filter(rate>0 & !is.na(start_zone) & !is.na(end_zone))

add starting x,y coordinates
attack_rate <- cbind(attack_rate,

dv_xy(attack_rate$start_zone, end = "lower", xynames = c("sx","sy")))

and ending x,y coordinates
attack_rate <- cbind(attack_rate,

dv_xy(attack_rate$end_zone, end = "upper", xynames = c("ex","ey")))

dv_xy2cone 37

plot in reverse order so largest arrows are on the bottom
attack_rate <- attack_rate %>% dplyr::arrange(desc(rate))

p <- ggplot(attack_rate,aes(x,y,col = rate)) + ggcourt(labels = c(teams(x)[1],""))
for (n in 1:nrow(attack_rate))

p <- p + geom_path(data = data.frame(x = c(attack_rate$sx[n], attack_rate$ex[n]),
y = c(attack_rate$sy[n],attack_rate$ey[n]),
rate = attack_rate$rate[n]),

aes(size = rate), lineend = "round", arrow = arrow(ends = "last", type = "closed"))
p + scale_fill_gradient(name = "Attack rate") + guides(size = "none")

End(Not run)

dv_xy2cone Convert x, y coordinates to cones

Description

Convert x, y coordinates to cones

Usage

dv_xy2cone(x, y = NULL, start_zones, force_center_zone = FALSE)

Arguments

x numeric: the x coordinate

y numeric: the y coordinate. If y is NULL, x will be treated as a grid index (see
dv_index2xy)

start_zones numeric or character: the starting zone of each row (values 1-9, or "L", "M",
"R")

force_center_zone

logical: a vector indicating the rows that should be treated as center zone attacks
regardless of their start_zone value (e.g. attacks by the setter). If FALSE, the
start_zone value will be used. If provided as a single scalar value, this will be
applied to all attacks

Value

A numeric vector giving the cone number

See Also

dv_xy2index, dv_index2xy, dv_cone2xy, dv_xy2zone, dv_xy2subzone

38 dv_xy2subzone

Examples

Not run:

a bunch of random points on and around the court
idx <- round(runif(100, min = 1, max = 10000))

convert to cones, assuming a start_zone of "L"
cn <- dv_xy2cone(x = idx, start_zones = "M")

generate the cone polygons for reference
cxy <- dv_cone_polygons("M")
cxyl <- dv_cone_polygons("M", end = "lower")

plot
ggplot(cxy, aes(x, y, group = cone_number, fill = as.factor(cone_number))) +

the cone polygons
geom_polygon() + geom_polygon(data = cxyl) +
ggcourt(labels = NULL) +
and our points
geom_point(data = dv_index2xy(idx) %>% mutate(cone_number = cn), shape = 21,

colour = "black", size = 2)

the points shoud be coloured the same as the cone polygons

End(Not run)

dv_xy2subzone Convert x, y coordinates to zones and subzones

Description

Convert x, y coordinates to zones and subzones

Usage

dv_xy2subzone(x, y = NULL)

Arguments

x numeric: the x coordinate

y numeric: the y coordinate. If y is NULL, x will be treated as a grid index (see
dv_index2xy)

Value

A tibble with columns zone and subzone

dv_xy2zone 39

See Also

dv_xy2index, dv_index2xy, dv_cone2xy, dv_xy2zone

Examples

Not run:

a bunch of random points on and around the court
idx <- round(runif(100, min = 1, max = 10000))

convert to zones
zn <- dv_xy2subzone(x = idx)

or, equivalently, convert the index to xy values first
zn <- cbind(zn, dv_index2xy(idx))

plot
ggplot(zn, aes(x, y, colour = as.factor(zone), shape = subzone)) + geom_point(size = 3) +

ggcourt(labels = NULL)

the points shoud be coloured by zone

End(Not run)

dv_xy2zone Convert x, y coordinates to zones

Description

Convert x, y coordinates to zones

Usage

dv_xy2zone(x, y = NULL, as_for_serve = FALSE)

Arguments

x numeric: the x coordinate

y numeric: the y coordinate. If y is NULL, x will be treated as a grid index (see
dv_index2xy)

as_for_serve logical: if TRUE, treat the zones as if they refer to serving locations (i.e. zone 7
in between zones 5 and 6, and zone 9 in between zones 6 and 1)

Value

A numeric vector giving the zone number

40 findnext

See Also

dv_xy2index, dv_index2xy, dv_cone2xy, dv_xy2subzone

Examples

Not run:

a bunch of random points on and around the court
idx <- round(runif(100, min = 1, max = 10000))

convert to zones
zn <- dv_xy2zone(x = idx)

or, equivalently, convert the index to xy values first
idx_xy <- dv_index2xy(idx)
zn <- dv_xy2zone(x = idx_xyx, idx_xyy)

plot
ggplot(idx_xy, aes(x, y, fill = as.factor(zn))) + geom_point(shape = 21) +

ggcourt(labels = NULL)

the points shoud be coloured by zone

End(Not run)

findnext Find each entry in y that follows each entry in x

Description

Find each entry in y that follows each entry in x

Usage

findnext(x, y)

Arguments

x numeric: vector
y numeric: vector

Value

vector, each entry is the value in y that is next-largest to each corresponding entry in x

Examples

findnext(c(1,5,10),c(1,2,3,7,8,9))

findprev 41

findprev Find each entry in y that precedes each entry in x

Description

Find each entry in y that precedes each entry in x

Usage

findprev(x, y)

Arguments

x numeric: vector

y numeric: vector

Value

vector, each entry is the value in y that is next-smallest to each corresponding entry in x

Examples

findprev(c(1,5,10),c(1,2,3,7,8,9))

find_first_attack Find first attacks by the receiving team (i.e. attacks associated with a
serve reception)

Description

Find first attacks by the receiving team (i.e. attacks associated with a serve reception)

Usage

find_first_attack(x)

Arguments

x data.frame: the plays component of a datavolley object, as returned by dv_read()

Value

named list with components "ix" (logical indices into the x object where the row corresponds to a
first attack in a rally), "n" (number of receptions for which there was a first attack by the receiving
team), "n_win" (the number of winning first attacks), "win_rate" (number of winning first attacks
as a proportion of the total number of first attacks).

42 find_match

See Also

dv_read plays

Examples

Not run:
x <- dv_read(dv_example_file(), insert_technical_timeouts=FALSE)
first attack win rate, by team
by(plays(x),plays(x)$team,function(z)find_first_attack(z)$win_rate)

End(Not run)

find_match Find a particular match in a list of datavolley objects

Description

Find a particular match in a list of datavolley objects

Usage

find_match(match_id, x)

Arguments

match_id string: match_id to find

x list: list of datavolley objects as returned by dv_read

Value

numeric index of the match in the list

See Also

dv_read

find_player_name_remapping 43

find_player_name_remapping

Attempt to build a player name remapping table

Description

A player name can sometimes be spelled incorrectly, particularly if there are character encoding
issues. This can be a particular problem when combining data from multiple files. This function
will attempt to find names that have been misspelled and create a remapping table suitable to pass
to remap_player_names. Player names will only be compared within the same team. Note that this
function is unlikely to get perfect results: use its output with care.

Usage

find_player_name_remapping(x, distance_threshold = 3, verbose = TRUE)

Arguments

x datavolley: a datavolley object as returned by dv_read, or list of such objects

distance_threshold

numeric: if two names differ by an amount less than this threshold, they will be
treated as the same name

verbose logical: print progress to console as we go? Note that warnings will also be
issued regardless of this setting

Value

data.frame with columns team, from, to

See Also

remap_player_names, check_player_names

Examples

Not run:
x <- dv_read(dv_example_file(), insert_technical_timeouts = FALSE)
remap <- find_player_name_remapping(x)

End(Not run)

44 find_runs

find_runs Generate information about runs of events

Description

Find runs of events within a match. Typically, this function would be passed a subset of plays(x),
such as rows corresponding to serves. Runs that are terminated by the end of a set are not assigned
a run_length.

Usage

find_runs(x, idvars = "team", within_set = TRUE)

Arguments

x data.frame: a subset of the plays component of a datavolley object, as returned
by dv_read()

idvars character: string or character vector of variabe names to use to identify the entity
doing the events

within_set logical: only consider runs within a single set? If FALSE, runs that span sets
will be treated as a single run

Value

A data.frame the same number of rows as x, and with columns run_id (the identifier of the run to
which each row belongs), run_length (the length of the run), and run_position (the position of
this row in its associated run).

See Also

dv_read plays

Examples

Not run:
find runs of serves
x <- dv_read(dv_example_file(), insert_technical_timeouts = FALSE)
serve_idx <- find_serves(plays(x))
serve_run_info <- find_runs(plays(x)[serve_idx,])
distribution of serve run lengths
table(unique(serve_run_info[,c("run_id","run_length")])$run_length)

End(Not run)

find_serves 45

find_serves Find serves

Description

Find serves

Usage

find_serves(x)

Arguments

x data.frame: the plays component of a datavolley object, as returned by dv_read()

Value

a logical vector, giving the indices of the rows of x that correspond to serves

See Also

dv_read plays

Examples

Not run:
x <- dv_read(dv_example_file(), insert_technical_timeouts=FALSE)
serve_idx <- find_serves(plays(x))
number of serves by team
table(plays(x)$team[serve_idx])

End(Not run)

fix_ace_evaluations Find aces that might not be marked as such

Description

Some DataVolley files do not indicate serve aces with the skill evaluation "Ace". This function will
search for winning serves, either with no reception or a reception error, and change their evaluation
value to "Ace"

Usage

fix_ace_evaluations(x, rotation_error_is_ace = FALSE, verbose = TRUE)

46 ggcourt

Arguments

x datavolley: a datavolley object as returned by dv_read, or list of such objects
rotation_error_is_ace

logical: should a rotation error on reception by the receiving team be counted as
an ace?

verbose logical: print progress to console?

Value

datavolley object or list of such with updated evaluation values

See Also

dv_read

ggcourt ggplot volleyball court

Description

Volleyball court schematic suitable for adding to a ggplot

Usage

ggcourt(
court = "full",
show_zones = TRUE,
labels = c("Serving team", "Receiving team"),
as_for_serve = FALSE,
show_zone_lines = TRUE,
show_minor_zones = FALSE,
show_3m_line = TRUE,
grid_colour = "black",
zone_colour = "grey70",
minor_zone_colour = "grey80",
fixed_aspect_ratio = TRUE,
zone_font_size = 10,
label_font_size = 12,
label_colour = "black",
court_colour = NULL,
figure_colour = NULL,
background_only = FALSE,
foreground_only = FALSE,
line_width = 0.5,
xlim,
ylim,
...

)

ggcourt 47

Arguments

court string: "full" (show full court) or "lower" or "upper" (show only the lower or
upper half of the court)

show_zones logical: add numbers indicating the court zones (3m squares)?

labels string: labels for the lower and upper court halves (pass NULL for no labels)

as_for_serve logical: if TRUE and show_zones is TRUE, show zones as for serving. Only
zones 1,5,6,7,9 are meaningful in this case

show_zone_lines

logical: if FALSE, just show the 3m line. If TRUE, also show the 3m x 3m
zones

show_minor_zones

logical: add lines for the subzones (1.5m squares)?

show_3m_line logical: if TRUE, show the 3m (10ft) line

grid_colour string: colour to use for court sidelines, 3m line, and net

zone_colour string: colour to use for zone lines and labels
minor_zone_colour

string: colour to use for minor zone grid lines
fixed_aspect_ratio

logical: if TRUE, coerce the plotted court to be square (for a half-court plot) or a
2:1 rectangle (full court plot). Prior to package version 0.5.3 this was not TRUE
by default

zone_font_size numeric: the font size of the zone labels
label_font_size

numeric: the font size of the labels

label_colour string: colour to use for labels

court_colour string: colour to use for the court. If NULL, the court is only plotted with lines
(no colour fill) and so the figure_colour will show through. Several special
values are also supported here:

• court_colour = "indoor" can be used as a shortcut to set the court colour
to orange, figure colour to blue, and lines and labels to white (similar to the
typical indoor court colour scheme)

• court_colour = "beach" can be used as a shortcut to set the court and
figure colour to a sandy-coloured yellow, lines and labels to black, and with
the 3m line not shown by default

• court_colour = "sand" as for "beach" but with a sand texture image used
as the court background

figure_colour string: colour to set the figure background to. If NULL, the background colour of
the theme will be used (white, by default)

background_only

logical: if TRUE, only plot the background elements (including general plot at-
tributes such as the theme)

foreground_only

logical: if TRUE, only plot the foreground elements (grid lines, labels, etc)

48 ggcourt

line_width numeric: line width (passed as the size parameter to e.g. ggplot2::geom_path)

xlim numeric: (optional) limits for the x-axis

ylim numeric: (optional) limits for the y-axis

... : additional parameters passed to ggplot2::theme_classic

Details

The datavolley package uses the following dimensions and coordinates for plotting:

• the court is shown such that the sidelines are oriented vertically and the net is oriented hori-
zontally

• the intersection of the left-hand sideline and the bottom baseline is at (0.5, 0.5)

• the intersection of the right-hand sideline and the top baseline is at (3.5, 6.5)

• the net intersects the sidelines at (0.5, 3.5) and (3.5, 3.5)

• the zones 1-9 (as defined in the DataVolley manual) on the lower half of the court are located
at:

1. (3, 1)
2. (3, 3)
3. (2, 3)
4. (1, 3)
5. (1, 1)
6. (2, 1)
7. (1, 2)
8. (2, 2)
9. (3, 2)

• the zones 1-9 (as defined in the DataVolley manual) on the upper half of the court are located
at:

1. (1, 6)
2. (1, 4)
3. (2, 4)
4. (3, 4)
5. (3, 6)
6. (2, 6)
7. (3, 5)
8. (2, 5)
9. (1, 5)

To get a visual depiction of this, try: ggplot() + ggcourt() + theme_bw()

Value

ggplot layer

ggcourt 49

See Also

dv_xy, dv_xy2index, dv_index2xy, dv_flip_xy

Examples

Not run:
x <- dv_read(dv_example_file(), insert_technical_timeouts=FALSE)

library(ggplot2)
library(dplyr)

Example 1: attack frequency by zone, per team

attack_rate <- plays(x) %>% dplyr::filter(skill == "Attack") %>%
group_by(team, start_zone) %>% dplyr::summarize(n_attacks=n()) %>%
mutate(rate=n_attacks/sum(n_attacks)) %>% ungroup

add columns "x" and "y" for the x,y coordinates associated with the zones
attack_rate <- cbind(attack_rate, dv_xy(attack_rate$start_zone, end = "lower"))

for team 2, these need to be on the top half of the diagram
tm2 <- attack_rate$team == teams(x)[2]
attack_rate[tm2, c("x", "y")] <- dv_xy(attack_rate$start_zone, end = "upper")[tm2,]

plot this
ggplot(attack_rate, aes(x, y, fill = rate)) + geom_tile() + ggcourt(labels = teams(x)) +

scale_fill_gradient2(name = "Attack rate")

Example 2: controlling layering
use the background_only and foreground_only parameters to control the
order of layers in a plot

ggplot(attack_rate, aes(x, y, fill=rate)) +
add the background court colours
ggcourt(court_colour = "indoor", background_only = TRUE) +
now the heatmap
geom_tile() +
and finally the grid lines and labels
ggcourt(labels = teams(x), foreground_only = TRUE, court_colour = "indoor")

Example 3: map of starting and ending zones of attacks using arrows

first tabulate attacks by starting and ending zone
attack_rate <- plays(x) %>% dplyr::filter(team == teams(x)[1] & skill == "Attack") %>%

group_by(start_zone, end_zone) %>% tally() %>% ungroup

convert counts to rates
attack_rate$rate <- attack_rate$n/sum(attack_rate$n)

discard zones with zero attacks or missing location information

50 inspect

attack_rate <- attack_rate %>% dplyr::filter(rate>0 & !is.na(start_zone) & !is.na(end_zone))

add starting x,y coordinates
attack_rate <- cbind(attack_rate, dv_xy(attack_rate$start_zone, end = "lower",

xynames = c("sx","sy")))

and ending x,y coordinates
attack_rate <- cbind(attack_rate, dv_xy(attack_rate$end_zone, end = "upper",

xynames = c("ex","ey")))

plot in reverse order so largest arrows are on the bottom
attack_rate <- attack_rate %>% dplyr::arrange(desc(rate))

p <- ggplot(attack_rate, aes(x, y, col = rate)) + ggcourt(labels = c(teams(x)[1], ""))
for (n in 1:nrow(attack_rate))

p <- p + geom_path(data = data.frame(x = c(attack_rate$sx[n], attack_rate$ex[n]),
y = c(attack_rate$sy[n], attack_rate$ey[n]),
rate = attack_rate$rate[n]),

aes(size = rate), lineend = "round",
arrow = arrow(length = unit(2, "mm"), type = "closed",

angle = 20, ends = "last"))
p + scale_colour_gradient(name = "Attack rate") + guides(size = "none")

End(Not run)

inspect Convenience function for inspecting the plays component of a datavol-
ley object

Description

Convenience function for inspecting the plays component of a datavolley object

Usage

inspect(x, vars = "minimal", maxrows = 100, extra)

Arguments

x datavolleyplays: the plays component of a datavolley object as returned by
dv_read

vars string: which variables to print? "minimal" set or "all"

maxrows numeric: maximum number of rows to print

extra character: names of any extra columns to include in the output

See Also

dv_read plays

plays 51

Examples

Not run:
x <- dv_read(dv_example_file(), insert_technical_timeouts=FALSE)
inspect(plays(x))

End(Not run)

plays Extract the plays component from a datavolley object, or assign a new
one

Description

Extract the plays component from a datavolley object, or assign a new one

Usage

plays(x)

plays(x) <- value

Arguments

x datavolley: a datavolley object as returned by dv_read

value datavolleyplays: new data

Value

The plays component of x (a data.frame), or a modified version of x with the new plays component
inserted

See Also

dv_read

Examples

Not run:
x <- dv_read(dv_example_file(), insert_technical_timeouts=FALSE)
inspect(plays(x))

p2 <- plays(x)
plays(x) <- p2

End(Not run)

52 play_phase

play_phase Figure out the phase of play associated with each point

Description

Phase is either "Serve", "Reception" (serve reception and the set and attack immediately following
it, as well as the opposition block on that attack), or "Transition" (all play actions after that)

Usage

play_phase(x, method = "default")

Arguments

x datavolleyplays: the plays component of a datavolley object as returned by
dv_read

method string: "default" (uses the team_touch_id and skill values to figure out phase),
or "alt" (uses the sequences of skill values only. This is slower and probably
less reliable, but will be more likely to give correct results in some situations
(e.g. if the DataVolley file has been scouted in practice mode, and all actions
have been assigned to the one team)

Value

character vector

See Also

dv_read plays

Examples

Not run:
x <- dv_read(dv_example_file(), insert_technical_timeouts = FALSE)
px <- plays(x)
px$phase <- play_phase(px)

End(Not run)

print.summary.datavolley 53

print.summary.datavolley

Print method for summary.datavolley

Description

Print method for summary.datavolley

Usage

S3 method for class 'summary.datavolley'
print(x, ...)

Arguments

x summary.datavolley: a summary.datavolley object as returned by summary.datavolley

... : additional arguments (currently these have no effect)

See Also

summary.datavolley

print.summary.datavolleylist

Print method for summary.datavolleylist

Description

Print method for summary.datavolleylist

Usage

S3 method for class 'summary.datavolleylist'
print(x, ...)

Arguments

x summary.datavolleylist: a summary.datavolleylist object, as returned by dvlist_summary

... : additional arguments (currently these have no effect)

See Also

dvlist_summary

54 remap_player_names

remap_player_info Change player information

Description

An experimental function to replace remap_player_names as a more comprehensive remapping of
player attributes.

Usage

remap_player_info(x, remap)

Arguments

x datavolley: a datavolley object as returned by dv_read, or list of such objects

remap data.frame: data.frame of strings with columns team, name_from, and any of
player_id, firstname, and lastname

Value

A datavolley object or list with corresponding player names changed

Examples

Not run:
x <- dv_read(dv_example_file(), insert_technical_timeouts = FALSE)
x <- remap_player_info(x, data.frame(team = c("Nova KBM Branik", "Braslovče"),

name_from = c("ELA PINTAR", "KATJA MIHALINEC"),
firstname = c("Ela", "Katja"), stringsAsFactors = FALSE))

End(Not run)

remap_player_names Change player names

Description

A player name can sometimes be spelled incorrectly, particularly if there are character encoding
issues. This can be a particular problem when combining data from multiple files. A player match-
ing the team and from name entries in a row in remap is renamed to the corresponding to value.
Alternatively, remap can be provided with the columns player_id and player_name: all player
name entries associated with a given player_id will be changed to the associated player_name.

Usage

remap_player_names(x, remap)

remap_team_names 55

Arguments

x datavolley: a datavolley object as returned by dv_read, or list of such objects
remap data.frame: data.frame of strings with columns team, from, and to

Value

A datavolley object or list with corresponding player names changed

See Also

dv_read, check_player_names, find_player_name_remapping

Examples

Not run:
x <- dv_read(dv_example_file(), insert_technical_timeouts = FALSE)
x <- remap_player_names(x, data.frame(team = c("Nova KBM Branik", "Braslovče"),

from = c("ELA PINTAR", "KATJA MIHALINEC"),
to = c("Ela PINTAR", "Katja MIHALINEC"),
stringsAsFactors = FALSE))

x <- remap_player_names(x, data.frame(player_id = c("id1", "id2"),
player_name = c("name to use 1", "name to use 2"),
stringsAsFactors = FALSE))

End(Not run)

remap_team_names Change team names

Description

A team name can sometimes be spelled incorrectly, particularly if there are character encoding
issues. This can be a particular problem when combining data from multiple files. If a team name
matches the from entry and/or its ID matches the team_id entry in a row in remap, the team will
be renamed to the corresponding to value and/or its ID changed to the corresponding to_team_id
value.

Usage

remap_team_names(x, remap, fixed = TRUE)

Arguments

x datavolley: a datavolley object as returned by dv_read, or list of such objects
remap data.frame: data.frame of strings with one or both columns from and team_id,

and one or both columns to and to_team_id

fixed logical: treat the from and team_id entries as fixed strings? If fixed is FALSE
they will be treated as regular expressions

56 serve_win_points

Value

datavolley object or list with corresponding team names changed

See Also

dv_read

Examples

Not run:
x <- dv_read(dv_example_file(), insert_technical_timeouts = FALSE)
summary(x)

rename a team based just on team name
summary(remap_team_names(x, data.frame(from="Nova KBM Branik", to="NKBM Branik")))

rename a team based on team name and ID
summary(remap_team_names(x, data.frame(from="Nova KBM Branik", to="NKBM Branik", team_id="MB4")))

End(Not run)

serve_win_points Find serve win points

Description

Find points in which the serving team wins the point. Serve win rate is the fraction of serves won
by the serving team.

Usage

serve_win_points(x, return_id = FALSE)

Arguments

x data.frame: the plays component of a datavolley object, as returned by dv_read()

return_id logical: include the match_id and point_id of all serve win points in the returned
object?

Value

named list with components "ix" (logical indices of serves corresponding to serve win points in the
x object), "n" (number of serve win points in x), "rate" (serve win rate from x). If return_id is
TRUE, also return a component "id" (a data.frame containing the match_id and point_id of all serve
win points)

See Also

dv_read plays

skill_evaluation_decoder 57

Examples

Not run:
x <- dv_read(dv_example_file(), insert_technical_timeouts=FALSE)
serve_idx <- find_serves(plays(x))
swp <- serve_win_points(plays(x))
number of serves by team
table(plays(x)$team[serve_idx])
number of points won on serve by team
table(plays(x)$team[serve_idx & swp$ix])

End(Not run)

skill_evaluation_decoder

Translate skill evaluation codes into meaningful summary phrases

Description

If your DataVolley files use evaluation codes differently to those coded here, you will need to supply
a custom skill_evaluation_decode function to dv_read

Usage

skill_evaluation_decoder(style = "default")

Arguments

style string: currently "default" (following the standard definitions described in the
DataVolley manual) or "volleymetrics" (per the conventions that VolleyMetrics
use)

Value

function. This function takes arguments skill, evaluation_code, and show_map and returns a string
giving the interpretation of that skill evaluation code

See Also

dv_read

Examples

sd <- skill_evaluation_decoder()
sd("S","#")
sd(show_map=TRUE)

58 teams

summary.datavolley A simple summary of a volleyball match

Description

A simple summary of a volleyball match

Usage

S3 method for class 'datavolley'
summary(object, ...)

Arguments

object datavolley: datavolley object as returned by dv_read

... : additional arguments (currently these have no effect)

Value

list of summary items

See Also

dv_read

Examples

x <- dv_read(dv_example_file(), insert_technical_timeouts=FALSE)
summary(x)

teams Get team names and IDs from datavolley object

Description

Get team names and IDs from datavolley object

teams 59

Usage

teams(x)

home_team(x)

home_team_id(x)

visiting_team(x)

visiting_team_id(x)

Arguments

x datavolley or data.frame: a datavolley object as returned by dv_read, or the
plays component of that object

Value

character vector of team names or IDs

See Also

dv_read

Examples

Not run:
x <- dv_read(dv_example_file(), insert_technical_timeouts = FALSE)
teams(x)
home_team_id(x)

End(Not run)

Index

adist, 3

check_player_names, 3, 43, 55

datavolley, 4
datavolley-package (datavolley), 4
dv_action2text, 5
dv_attack_code2desc, 6
dv_attack_code2loc, 6
dv_attack_code2set_type, 7
dv_attack_code2side, 7
dv_attack_code_map, 8
dv_attack_phase, 8
dv_cone2xy, 9, 36, 37, 39, 40
dv_cone_polygons, 10
dv_court, 11, 19, 23
dv_create_meta_attacks, 13
dv_example_file, 14
dv_fake_coordinates, 15
dv_find_to_flip_coordinates, 16
dv_flip_index (dv_flip_xy), 17
dv_flip_x (dv_flip_xy), 17
dv_flip_xy, 9, 12, 16, 17, 20, 36, 49
dv_flip_y (dv_flip_xy), 17
dv_heatmap, 18, 23
dv_index2xy, 9, 12, 17, 20, 36–40, 49
dv_int2rgb, 21
dv_meta_video, 21
dv_meta_video<- (dv_meta_video), 21
dv_plot_new, 19, 22
dv_point_phase, 23
dv_read, 3–5, 13, 14, 24, 28, 29, 34, 35, 42,

44–46, 50–52, 55–59
dv_read_sq, 26
dv_repair, 27
dv_rgb2int (dv_int2rgb), 21
dv_sync_contact_times (dv_sync_video),

29
dv_sync_offsets (dv_sync_video), 29
dv_sync_summary, 28, 30, 31

dv_sync_video, 28, 29
dv_validate, 25, 26, 32
dv_write, 34
dv_xy, 9, 12, 15, 17, 20, 35, 49
dv_xy2cone, 37
dv_xy2index, 9, 12, 17, 36, 37, 39, 40, 49
dv_xy2index (dv_index2xy), 20
dv_xy2subzone, 9, 20, 36, 37, 38, 40
dv_xy2zone, 9, 20, 36, 37, 39, 39
dvlist_summary, 4, 53

find_first_attack, 41
find_match, 42
find_player_name_remapping, 43, 55
find_runs, 44
find_serves, 45
findnext, 40
findprev, 41
fix_ace_evaluations, 45

ggcourt, 9, 11, 12, 17, 20, 35, 36, 46

home_team (teams), 58
home_team_id (teams), 58

inspect, 50

par, 22
play_phase, 52
plays, 42, 44, 45, 50, 51, 52, 56
plays<- (plays), 51
plot.window, 22
print.summary.datavolley, 53
print.summary.datavolleylist, 53

read_dv (dv_read), 24
remap_player_info, 54
remap_player_names, 43, 54
remap_team_names, 55

serve_win_points, 56

60

INDEX 61

skill_evaluation_decoder, 25, 26, 57
summary.datavolley, 53, 58

teams, 58

validate_dv (dv_validate), 32
visiting_team (teams), 58
visiting_team_id (teams), 58

write_dv (dv_write), 34

	check_player_names
	datavolley
	dvlist_summary
	dv_action2text
	dv_attack_code2desc
	dv_attack_code2loc
	dv_attack_code2set_type
	dv_attack_code2side
	dv_attack_code_map
	dv_attack_phase
	dv_cone2xy
	dv_cone_polygons
	dv_court
	dv_create_meta_attacks
	dv_example_file
	dv_fake_coordinates
	dv_find_to_flip_coordinates
	dv_flip_xy
	dv_heatmap
	dv_index2xy
	dv_int2rgb
	dv_meta_video
	dv_plot_new
	dv_point_phase
	dv_read
	dv_read_sq
	dv_repair
	dv_sync_summary
	dv_sync_video
	dv_validate
	dv_write
	dv_xy
	dv_xy2cone
	dv_xy2subzone
	dv_xy2zone
	findnext
	findprev
	find_first_attack
	find_match
	find_player_name_remapping
	find_runs
	find_serves
	fix_ace_evaluations
	ggcourt
	inspect
	plays
	play_phase
	print.summary.datavolley
	print.summary.datavolleylist
	remap_player_info
	remap_player_names
	remap_team_names
	serve_win_points
	skill_evaluation_decoder
	summary.datavolley
	teams
	Index

