
Package: ovlytics (via r-universe)
August 30, 2024

Title Functions and Algorithms for Volleyball Analytics

Version 0.2.9

Description Analytical functions for volleyball analytics, to be used
in conjunction with the datavolley and peranavolley packages.

URL https://ovlytics.openvolley.org,

https://github.com/openvolley/ovlytics

BugReports https://github.com/openvolley/ovlytics/issues

Imports assertthat, cowplot, datavolley (>= 1.0.2), dplyr (>= 1.0.0),
forcats, ggplot2, grid, gt, htmltools, MASS, methods, ovdata,
paletteer, patchwork, purrr, reactable, reactablefmtr, rlang,
scales, stringr, tidyr, viridisLite

Suggests covr, shiny, testthat

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.1

Roxygen list(markdown = TRUE)

Remotes openvolley/datavolley, openvolley/ovdata

Repository https://openvolley.r-universe.dev

RemoteUrl https://github.com/openvolley/ovlytics

RemoteRef HEAD

RemoteSha 9aab15a671b39955cbda9eac0efc441c1716a593

Contents
attack_eff . 2
ovlytics . 3
ov_augment_plays . 3
ov_create_history_table . 4

1

https://ovlytics.openvolley.org
https://github.com/openvolley/ovlytics
https://github.com/openvolley/ovlytics/issues

2 attack_eff

ov_example_file . 6
ov_heatmap_kde . 6
ov_infer_player_roles . 8
ov_plot_distribution . 9
ov_plot_history_table . 10
ov_plot_sequence_distribution . 10
ov_plot_ssd . 11
ov_print_history_table . 12
ov_print_rate_table . 13
ov_season_table . 13
ov_setter_repetition . 14
ov_simulate_multiple_setter_distribution . 15
ov_simulate_setter_distribution . 17
ov_sort_attack_codes . 18
ov_table_mssd . 19

Index 20

attack_eff Various skill performance indicators

Description

• attack_eff: (number of kills - number of errors and blocked attacks) / (number of attacks)

• serve_eff: (number of aces and positive serves - number of errors and poor serves) / (number
of serves)

• reception_eff: (number of perfect and positive passes - number of errors and overpasses) /
(number of passes)

Usage

attack_eff(evaluation, skill)

serve_eff(evaluation, skill)

reception_eff(evaluation, skill)

Arguments

evaluation character: vector of skill evaluations ("Winning attack", "Error", etc)

skill character: (optional) vector of skill values ("Attack", "Block", etc). If provided,
it will be used to filter the evaluation vector to the elements corresponding to
the correct skill. If not provided, all elements of evaluation will be used

Value

A numeric scalar

ovlytics 3

Examples

Not run:
library(dplyr)
x <- ovdata_example("mlafin_braslovce_nkbm", as = "parsed")
plays(x) %>% dplyr::filter(skill == "Attack") %>% group_by(player_name) %>%
dplyr::summarize(N_attacks = n(), att_eff = attack_eff(evaluation))

End(Not run)

ovlytics ovlytics

Description

Analytical functions for volleyball analytics, to be used in conjunction with the datavolley and
peranavolley packages.

ov_augment_plays Add some extra columns to a plays object

Description

Add some extra columns to a plays object

Usage

ov_augment_plays(
x,
to_add = c("receiving_team", "touch_summaries", "setters"),
rotation = "SHM",
use_existing = TRUE

)

Arguments

x data.frame: the plays data.frame as returned by datavolley::read_dv() or
peranavolley::pv_read()

to_add character: columns to add

• "receiving_team" adds the columns "receiving_team" (team name) and "re-
ceiving_team_id"

4 ov_create_history_table

• "winners" adds the columns "set_won_by", "set_won_by_id" (the name
and ID of the team that won the current set), "match_won_by", "match_won_by_id"
(the name and ID of the team that won the current match), "team_won_set"
and "team_won_match" (did the team making the action in the current row
win the set/match), and "home_sets_won" and "visiting_sets_won" (the
number of sets won by the home and visiting teams)

• "touch_summaries" adds a number of columns named "ts_*" that summa-
rize a team touch (e.g. columns "ts_pass_quality", "ts_pass_evaluation_code"
give the pass quality and pass evaluation code of the reception or dig asso-
ciated with a given team touch). "touch_summaries" also adds a column
named freeball_over, which disambiguates the action of putting a free-
ball over the net from the action of digging such a ball. Many scouts code
both of these as a "Freeball". The freeball_over column will be TRUE if it
was a freeball being put over the net, and FALSE otherwise (including free-
ball digs). Freeballs over and freeball digs will still both have "Freeball" in
their skill column

• "setters" adds the columns "home_setter_id", "visiting_setter_id" (the player
IDs of the home and visiting setter on court), and "setter_id", "setter_position",
and "setter_front_back" (the player ID and position of the setter from the
team performing the current action)

• "followed" adds the columns "followed_timeout", "followed_technical_timeout",
and "followed_sub"

• "player_role" add the column "player_role" which gives the role (outside,
middle, opposite, setter) for the active player on each row of x. This as-
sumes a standard rotation as specified by rotation. Note that player_role
does NOT include libero, although this can be inferred from the meta com-
ponent of a full datavolley object

• "all" is a shortcut for all of the above

rotation string: (only relevant when to_add includes "player_role") either "SHM" (as-
sume a setter-hitter-middle rotation order, i.e. outside hitter is in position 2 when
the setter is in 1), or "SMH" (setter-middle-hitter)

use_existing logical: if TRUE and all of the columns associated with a given to_add choice
are already present in x, they won’t be re-generated

Value

x with the extra columns added

ov_create_history_table

Create a prior table from a dvw or a directory of dvw files

Description

Create a prior table from a dvw or a directory of dvw files

ov_create_history_table 5

Usage

ov_create_history_table(
dvw,
play_phase = c("Reception", "Transition"),
attack_by = "code",
setter_position_by = "rotation",
exclude_attacks = c("PR"),
normalize_parameters = TRUE

)

Arguments

dvw string: path to one or more datavolley files, a list of one or more datavolley
objects, or a directory containing datavolley files

play_phase character: one or both of "Reception", "Transition"

attack_by string: either "code", "zone", "tempo" or "setter call"
setter_position_by

string: either "rotation", or "front_back"
exclude_attacks

character: vector of attack codes to exclude
normalize_parameters

logical: reduce the prior parameter values

Value

A list, currently with one component named "prior_table"

Examples

use this file to create the priors
hist_dvw <- ovdata_example("190301_kats_beds")
history_table <- ov_create_history_table(dvw = hist_dvw, attack_by = "setter call",

setter_position_by = "front_back")

use it on another file (here, the same file for demo purposes)
usually the history would be from a reference set of previous matches

dvw <- ovdata_example("190301_kats_beds")
setter <- ov_simulate_setter_distribution(dvw = dvw, play_phase = "Reception", n_sim = 100,

attack_by = "setter call", attack_options = "use_history",
setter_position_by = "front_back",
history_table = history_table, filter_sim = TRUE)

plot the results
ov_plot_ssd(setter, overlay_set_number = TRUE)
ov_plot_distribution(setter)

6 ov_heatmap_kde

ov_example_file Example DataVolley files provided as part of the ovlytics package

Description

Example DataVolley files provided as part of the ovlytics package

Usage

ov_example_file(choice = "190301_kats_beds")

Arguments

choice string: which data file to return?

• "190301_kats_beds" - a match between GKS Katowice and MKS Bedzin
during the 2018/19 Polish Plus Liga

Value

path to the file

Examples

myfile <- ov_example_file()
x <- dv_read(myfile)
summary(x)

ov_heatmap_kde Kernel density estimates for volleyball heatmaps

Description

Kernel density estimates for volleyball heatmaps

Usage

ov_heatmap_kde(
x,
y,
N = NULL,
resolution = "coordinates",
bw,
n,
court = "full",
auto_flip = FALSE

)

ov_heatmap_kde 7

Arguments

x : either a numeric vector of x-locations, or a three-column data.frame or matrix
with columns x, y, and optionally N. If x is a grouped tibble, the kernel density
estimates will be calculated separately for group

y numeric: (unless x is a data.frame or matrix) a numeric vector of y-locations

N numeric: (unless x is a data.frame or matrix) a numeric vector of counts associ-
ated with each location (the corresponding location was observed N times)

resolution string: the resolution of the locations, either "coordinates" or "subzones"

bw numeric: a vector of bandwidths to use in the x- and y-directions (see MASS::kde2d()).
If not provided, default values will be used based on the location resolution

n integer: (scalar or a length-2 integer vector) the number of grid points in each
direction. If not provided, 60 points in the x-direction and 60 (for half-court) or
120 points in the y-direction will be used

court string: "full" (generate the kernel density estimate for the full court) or "lower"
or "upper" (only the lower or upper half of the court)

auto_flip logical: if TRUE, and court is either "lower" or "upper", then locations corre-
sponding to the non-selected half of the court will be flipped. This might be
appropriate if, for example, the heatmap represents attack end locations that
were scouted with coordinates (because these aren’t necessarily all aligned to
the same end of the court by default)

Value

A data.frame with columns x, y, and density

Examples

library(ggplot2)
library(datavolley)

Example 1 - by coordinates
generate some fake coordinate data
Na <- 20
set.seed(17)
px <- data.frame(x = c(runif(Na, min = 0.4, max = 1.2), runif(Na, min = 2, max = 3)),

y = c(runif(Na, min = 4.5, max = 6.6), runif(Na, min = 4.9, max = 6.6)))

plot as points
ggplot(px, aes(x, y)) + ggcourt(labels = NULL, court = "upper") +

geom_point(colour = "dodgerblue")

or as a heatmap
hx <- ov_heatmap_kde(px, resolution = "coordinates", court = "upper")
ggplot(hx, aes(x, y, fill = density)) +

scale_fill_distiller(palette = "Purples", direction = 1, labels = NULL,
name = "Attack\ndensity") +

geom_raster() + ggcourt(labels = NULL, court = "upper")

8 ov_infer_player_roles

Example 2 - by subzones, with data from two attackers
generate some fake data
Na <- 20
set.seed(17)
px <- data.frame(zone = sample(c(1, 5:9), Na * 2, replace = TRUE),

subzone = sample(c("A", "B", "C", "D"), Na * 2, replace = TRUE),
attacker = c(rep("Attacker 1", Na), rep("Attacker 2", Na)))

convert to x, y coordinates
px <- cbind(px, dv_xy(zones = px$zone, end = "upper", subzone = px$subzone))

plot as tiles
library(dplyr)
ggplot(count(px, attacker, x, y), aes(x, y, fill = n)) + geom_tile() +

facet_wrap(~attacker) + ggcourt(labels = NULL, court = "upper")

or as a heatmap, noting that we group the data by attacker first
hx <- ov_heatmap_kde(group_by(px, attacker), resolution = "subzones", court = "upper")
ggplot(hx, aes(x, y, fill = density)) + facet_wrap(~attacker) +

scale_fill_distiller(palette = "Purples", direction = 1, labels = NULL,
name = "Attack\ndensity") +

geom_raster() + ggcourt(labels = NULL, court = "upper")

ov_infer_player_roles Infer the role of each player

Description

Infer the role of each player

Usage

ov_infer_player_roles(
x,
target_team,
method,
fall_back = TRUE,
setter_tip_codes = c("PP")

)

Arguments

x : a datavolley object (as returned by datavolley::dv_read()), a list of datavol-
ley objects, or the plays component of a datavolley object

target_team string or function: team to report on. If this is a function, it should return TRUE
when passed the target team name

ov_plot_distribution 9

method string: "meta" (rely on player metadata), "SHM" (assume a setter-hitter-middle
rotation order), "SMH" (setter-middle-hitter), or "data" (figure out positions
from scouting data). Method "meta" is the default if a datavolley object or list
of objects is provided

fall_back logical: if TRUE and method is "meta" and x is a single datavolley object BUT
player roles are not provided in the DataVolley file metadata section, fall back
to method="data"

setter_tip_codes

character: vector of attack combination codes that correspond to setter tips

Value

A data.frame

Examples

x <- ovdata_example("mlafin_braslovce_nkbm", as = "parsed")
guess roles according to the actions that the players made
rx <- ov_infer_player_roles(x, target_team = "Nova KBM Branik", method = "data")

ov_plot_distribution Court plot of a real and simulated setter distribution

Description

Court plot of a real and simulated setter distribution

Usage

ov_plot_distribution(
ssd,
label_setters_by = "id",
font_size = 11,
title_wrap = NA,
output = "plot"

)

Arguments

ssd simulated setter distribution output as returned by ov_simulate_setter_distribution()

label_setters_by

string: either "id" or "name"

font_size numeric: font size

title_wrap numeric: if non-NA, use strwrap() to break the title into lines of this width

output string: either "plot" or "list"

10 ov_plot_sequence_distribution

Examples

dvw <- ovdata_example("190301_kats_beds")
setter <- ov_simulate_setter_distribution(dvw = dvw, play_phase = c("Reception", "Transition"),

n_sim = 100, attack_by = "code")
ov_plot_distribution(setter)

ov_plot_history_table Plot the prior table

Description

Plot the prior table

Usage

ov_plot_history_table(history_table, team, setter_id)

Arguments

history_table data.frame: the prior_table component of the object returned by ov_create_history_table()

team string: team name

setter_id string: setter_id

Examples

hist_dvw <- ovdata_example("190301_kats_beds")
history_table <- ov_create_history_table(dvw = hist_dvw, attack_by = "tempo",

setter_position_by = "front_back",
normalize_parameters = FALSE)

team = unique(history_table$prior_table$team)[1]
setter_id = unique(history_table$prior_table$setter_id)[4]
ov_plot_history_table(history_table, team, setter_id)

ov_plot_sequence_distribution

Plot a simulated setter distribution sequence

Description

Plot a simulated setter distribution sequence

ov_plot_ssd 11

Usage

ov_plot_sequence_distribution(
ssd,
label_setters_by = "id",
font_size = 11,
title_wrap = NA,
split_set = FALSE,
output = "plot"

)

Arguments

ssd simulated setter distribution output as returned by ov_simulate_setter_distribution()

label_setters_by

string: either "id" or "name"

font_size numeric: font size

title_wrap numeric: if non-NA, use strwrap() to break the title into lines of this width

split_set boolean: if TRUE, separate the distribution sequence by set

output string: either "plot" or "list"

Examples

dvw <- ovdata_example("190301_kats_beds")
ssd <- ov_simulate_setter_distribution(dvw = dvw, play_phase = c("Reception"),

n_sim = 100, attack_by = "zone",
setter_position_by = "front_back")

ov_plot_sequence_distribution(ssd)

ov_plot_ssd Plot a simulated setter distribution

Description

Plot a simulated setter distribution

Usage

ov_plot_ssd(
ssd,
overlay_set_number = FALSE,
label_setters_by = "name",
font_size = 11

)

12 ov_print_history_table

Arguments

ssd simulated setter distribution output as returned by ov_simulate_setter_distribution()

overlay_set_number

boolean: if TRUE, overlay set number and score in the plot

label_setters_by

string: either "id" or "name"

font_size numeric: font size

Examples

dvw <- ovdata_example("190301_kats_beds")
setter <- ov_simulate_setter_distribution(dvw = dvw,

n_sim = 150, attack_by = "zone")
ov_plot_ssd(setter, overlay_set_number = TRUE)

ov_print_history_table

Print the prior table

Description

Print the prior table

Usage

ov_print_history_table(history_table, team, setter_id)

Arguments

history_table data.frame: the prior_table component of the object returned by ov_create_history_table()

team string: team name

setter_id string: setter_id

Examples

hist_dvw <- ovdata_example("190301_kats_beds")
history_table <- ov_create_history_table(dvw = hist_dvw, attack_by = "zone")
team = history_table$prior_table$team[1]
setter_id = history_table$prior_table$setter_id[1]
ov_print_history_table(history_table, team, setter_id)

ov_print_rate_table 13

ov_print_rate_table Print the rate table

Description

Print the rate table

Usage

ov_print_rate_table(ssd, team, setter_id)

Arguments

ssd simulated setter distribution output as returned by ov_simulate_setter_distribution()

team string: team name

setter_id string: setter_id

Examples

dvw <- ovdata_example("190301_kats_beds")
system.time({

ssd <- ov_simulate_setter_distribution(dvw = dvw, play_phase = "Reception",
n_sim = 500, setter_position_by = "front_back")

team <- ssdraw_datameta$teams$team[1]
setter_id <- ssdraw_datameta$players_h$player_id[which(ssdraw_datameta$players_h$role == "setter")][1]
ov_print_rate_table(ssd, team, setter_id)

})

ov_season_table Create a summary table of a team’s matches in a season

Description

Create a summary table of a team’s matches in a season

Usage

ov_season_table(xl, target_team, target_team_id, show_by = "match date")

14 ov_setter_repetition

Arguments

xl list: list of datavolley objects (each as returned by datavolley::dv_read()

target_team string: the name of the target team. Only one of target_team or target_team_id
is required

target_team_id string: the team ID of the target team. Ignored if target_team has been pro-
vided

show_by string: either "match date" (show each match according to its date) or "filename"
(show each match according to its filename. This might be useful if the match
dates are being parsed incorrectly by datavolley::dv_read())

Value

A tibble with columns "Opponent", "Date" (or "File"), "Result", "Set scores", and one column for
sets 1 to 5

Examples

trivial example of a single-match "season"
library(datavolley)
x <- dv_read(dv_example_file())
ov_season_table(list(x), target_team = home_team(x))

ov_setter_repetition Tabulate setter repeat patterns

Description

Note: analysis is done on the basis of attack actions, and simply assumes that the setter on court
made the set.

Usage

ov_setter_repetition(
x,
setter_id,
setter_name,
exclude_attacks = c("PP", "PR", "P2"),
exclude_negative_reception = TRUE,
exclude_highballs = FALSE

)

ov_simulate_multiple_setter_distribution 15

Arguments

x data.frame: the plays data.frame as returned by datavolley::read_dv() or
peranavolley::pv_read()

setter_id string: (optional) the player ID of the setter to analyze (or provide setter_name).
If neither setter_id nor setter_name are provided, all setters will be analyzed
separately, and collated results returned

setter_name string: (optional) the name of the setter to analyze (ignored if setter_id is
provided). If neither setter_id nor setter_name are provided, all setters will
be analyzed separately, and collated results returned

exclude_attacks

character: vector of attack codes to exclude
exclude_negative_reception

logical: if TRUE, exclude attacks following poor reception (likely to be out-of-
system and therefore might not represent attacks on which the setter had genuine
options)

exclude_highballs

logical: if TRUE, exclude highball attacks (likely to be out-of-system and there-
fore might not represent attacks on which the setter had genuine options)

Value

A data.frame with columns "team", "setter_name", "setter_id", "player_name", "player_id", "cate-
gory", "opportunities", "repeats", "repeat%"

Examples

x <- plays(ovdata_example("190301_kats_beds", as = "parsed"))
set_reps <- ov_setter_repetition(x, setter_name = "Lukas Tichacek")

library(ggplot2)
ggplot(set_reps, aes(x = player_name, y = `repeat%`)) + geom_col() +

geom_text(aes(x = player_name, label = paste0("N=", opportunities)),
angle = 90, y = 100, hjust = 1, inherit.aes = FALSE) +

facet_wrap(~category) +
theme_bw() +
theme(axis.text.x = element_text(angle = 60, vjust = 1, hjust = 1)) +
labs(x = NULL, y = "Repeat percentage")

ov_simulate_multiple_setter_distribution

Simulate a Bayesian Bandit choice for a given set of probabilities and
a number of points for multiple games

Description

Simulate a Bayesian Bandit choice for a given set of probabilities and a number of points for mul-
tiple games

16 ov_simulate_multiple_setter_distribution

Usage

ov_simulate_multiple_setter_distribution(
list_dv,
play_phase = c("Reception", "Transition"),
n_sim = 500,
priors = list(name = "beta", par1 = 1, par2 = 1),
epsilon = 1,
filter_sim = FALSE,
attack_options = "use_data",
setter_position_by = "rotation",
history_table = NULL,
attack_by = "code",
exclude_attacks = c("PR"),
rotation = "SHM",
shiny_progress = NULL

)

Arguments

list_dv list: list of datavolley object as returned by datavolley::dv_read()

play_phase character: one or both of "Reception", "Transition"

n_sim integer: number of simulations

priors numeric: prior distribution of the kill rate for the different attacking options

epsilon numeric: reward size

filter_sim logical:

attack_options string: either "use_data" or "use_history"
setter_position_by

string: either "rotation" or "front_back"

history_table list: (only if attack_options is "use_history") the object returned by ov_create_history_table()

attack_by string: either "code", "zone", "tempo", "setter call", "attacker_name", "player_role"
exclude_attacks

character: vector of attack codes to exclude

rotation string: (only relevant when attack_by is "player_role") either "SHM" (assume
a setter-hitter-middle rotation order), or "SMH" (setter-middle-hitter)

shiny_progress numeric: an optional two-element vector. If not NULL or NA, shiny::setProgress()
calls will be made during simulation with values in this range

See Also

ov_simulate_setter_distribution()

Examples

list_dv <- list(dv_read(ovdata_example("190301_kats_beds")))
system.time({

ov_simulate_setter_distribution 17

mssd <- ov_simulate_multiple_setter_distribution(list_dv = list_dv, play_phase = "Reception",
n_sim = 100, setter_position_by = "front_back")

})

ov_simulate_setter_distribution

Simulate a Bayesian Bandit choice for a given set of probabilities and
a number of points

Description

Simulate a Bayesian Bandit choice for a given set of probabilities and a number of points

Usage

ov_simulate_setter_distribution(
dvw,
play_phase = c("Reception", "Transition"),
n_sim = 500,
priors = list(name = "beta", par1 = 1, par2 = 1),
epsilon = 1,
filter_sim = FALSE,
attack_options = "use_data",
setter_position_by = "rotation",
history_table = NULL,
attack_by = "code",
exclude_attacks = c("PR"),
rotation = "SHM",
shiny_progress = NULL

)

Arguments

dvw string or datavolley: a datavolley object as returned by datavolley::dv_read()
or a path to datavolley file

play_phase character: one or both of "Reception", "Transition"

n_sim integer: number of simulations

priors numeric: prior distribution of the kill rate for the different attacking options

epsilon numeric: reward size

filter_sim logical:

attack_options string: either "use_data" or "use_history"
setter_position_by

string: either "rotation" or "front_back"

history_table list: (only if attack_options is "use_history") the object returned by ov_create_history_table()

attack_by string: either "code", "zone", "tempo", "setter call", "attacker_name", "player_role"

18 ov_sort_attack_codes

exclude_attacks

character: vector of attack codes to exclude

rotation string: (only relevant when attack_by is "player_role") either "SHM" (assume
a setter-hitter-middle rotation order), or "SMH" (setter-middle-hitter)

shiny_progress numeric: an optional two-element vector. If not NULL or NA, shiny::setProgress()
calls will be made during simulation with values in this range

See Also

ov_create_history_table()

Examples

dvw <- ovdata_example("190301_kats_beds")
system.time({

ssd <- ov_simulate_setter_distribution(dvw = dvw, play_phase = "Reception",
n_sim = 100, attack_by = "setter call",
setter_position_by = "front_back")

})

ov_sort_attack_codes Sort DataVolley attack codes

Description

Sort DataVolley attack codes

Usage

ov_sort_attack_codes(ac, by = "XV", na.last = NA)

Arguments

ac character: character vector of attack codes to sort

by string: method to use, currently only "XV" (any other value will default back
to using sort without modification). "XV" will place X and V codes first (in
numerical order, with each X preceding its matching V) then everything else in
alphabetical order after that

na.last logical: passed to sort

Value

Sorted character vector

ov_table_mssd 19

Examples

ov_sort_attack_codes(c("V5", "V1", "X6", "CF", "X5"))

Not run:
sorting might be useful for controlling the plot order when facetting
a `ggplot` by attack code
mydata$attack_code <- factor(mydata$attack_code,

levels = ov_sort_attack_codes(unique(na.omit(mydata$attack_code))))
ggplot(mydata, ...) + facet_wrap(~attack_code)

End(Not run)

ov_table_mssd Table of a simulated multi-game setter distribution sequence

Description

Table of a simulated multi-game setter distribution sequence

Usage

ov_table_mssd(mssd, label_setters_by = "name", team = NULL, nrows = 50)

Arguments

mssd simulated multi-game setter distribution output as returned by ov_simulate_multiple_setter_distribution()

label_setters_by

string: either "id" or "name"

team NULL or string: if non-NULL, show sequence just for this team name

nrows integer: number of rows per page in the table

Examples

Not run:
list_dv <- list(dv_read(ovdata_example("190301_kats_beds"))) # would normally be multiple games
mssd <- ov_simulate_multiple_setter_distribution(list_dv = list_dv,

play_phase = c("Reception", "Transition"), attack_by = "player_role",
n_sim = 100, setter_position_by = "front_back")

res <- ov_table_mssd(mssd, team = "GKS Katowice")

End(Not run)

Index

attack_eff, 2

datavolley::dv_read(), 8, 14, 16, 17
datavolley::read_dv(), 3, 15

MASS::kde2d(), 7

ov_augment_plays, 3
ov_create_history_table, 4
ov_create_history_table(), 10, 12, 16–18
ov_example_file, 6
ov_heatmap_kde, 6
ov_infer_player_roles, 8
ov_plot_distribution, 9
ov_plot_history_table, 10
ov_plot_sequence_distribution, 10
ov_plot_ssd, 11
ov_print_history_table, 12
ov_print_rate_table, 13
ov_season_table, 13
ov_setter_repetition, 14
ov_simulate_multiple_setter_distribution,

15
ov_simulate_multiple_setter_distribution(),

19
ov_simulate_setter_distribution, 17
ov_simulate_setter_distribution(), 9,

11–13, 16
ov_sort_attack_codes, 18
ov_table_mssd, 19
ovlytics, 3

peranavolley::pv_read(), 3, 15

reception_eff (attack_eff), 2

serve_eff (attack_eff), 2
shiny::setProgress(), 16, 18
sort, 18
strwrap(), 9, 11

20

	attack_eff
	ovlytics
	ov_augment_plays
	ov_create_history_table
	ov_example_file
	ov_heatmap_kde
	ov_infer_player_roles
	ov_plot_distribution
	ov_plot_history_table
	ov_plot_sequence_distribution
	ov_plot_ssd
	ov_print_history_table
	ov_print_rate_table
	ov_season_table
	ov_setter_repetition
	ov_simulate_multiple_setter_distribution
	ov_simulate_setter_distribution
	ov_sort_attack_codes
	ov_table_mssd
	Index

